If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-11x+3x^2=0
a = 3; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·3·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*3}=\frac{0}{6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*3}=\frac{22}{6} =3+2/3 $
| 2(b-3)-4b=4 | | 3(x+4)=4x=-2 | | 2(x+1)+2=x+6 | | r-6=24 | | 45v^2+100=0 | | (20n^2+46n-84)=0 | | 7/3x+28=35 | | -4x+2=-3=x | | (s+9)(s-7)=0 | | -2/9=8/3x | | 2x-5x=6.3 | | 4+2(3x-4)=8 | | r+1.41=6.78 | | 3*1+1/5y=7 | | -9+b=-5 | | 30(3x+30)=1260 | | 6x+19=x+14 | | 4.7x+54.8=7.2-7.2x | | 4x-2(x-5)=-2+5x-12 | | 4-x=-1/3 | | 2.5(10x+-50)=4(9-6x) | | A=9/8(h-19 | | x+2500=4000 | | 16-15t(3t-4)=8(-2t+11) | | j-6.78=14.83 | | (10r^2-25r+10)=0 | | 10=-(12x-3) | | 2x+4=x+11=90 | | -2(x+7)+(15x-3)=3x-47 | | 4+c=-1/3 | | 3x-3-5=32 | | 2/3x+5=3•x |